
Asynchronous Two-Level Checkpointing Scheme for Large-Scale Adjoints in the
Spectral-Element Solver Nek5000

Michel Schanen, Oana Marin, Hong Zhang, Mihai Anitescu
Mathematics and Computer Science Division

Argonne National Laboratory
Argonne, IL, USA

{mschanen,oanam,hongzhang,anitescu}@anl.gov

Abstract—Adjoints are an important computational tool for
large-scale sensitivity evaluation, uncertainty quantification,
and derivative-based optimization. An essential component of
their performance is the storage/recomputation balance in
which efficient checkpointing methods play a key role. We
introduce a novel asynchronous two-level adjoint checkpointing
scheme for multistep numerical time discretizations targeted at
large-scale numerical simulations. The checkpointing scheme
combines bandwidth-limited disk checkpointing and binomial
memory checkpointing. Based on assumptions about the target
petascale systems, which we later demonstrate to be realistic
on the IBM Blue Gene/Q system Mira, we create a model of
the expected performance of our checkpointing approach and
validate it using the highly scalable Navier-Stokes spectral-
element solver Nek5000 on small to moderate subsystems of
the Mira supercomputer. In turn, this allows us to predict
optimal algorithmic choices when using all of Mira. We
also demonstrate that two-level checkpointing is significantly
superior to single-level checkpointing when adjoining a large
number of time integration steps. To our knowledge, this
is the first time two-level checkpointing had been designed,
implemented, tuned, and demonstrated on fluid dynamics codes
at large scale of 50k+ cores.

Keywords-Two-Level Checkpointing; Adjoints; Gradient;
Large Scale; Nek5000 ; CFD; PETSc

I. INTRODUCTION

The computation of adjoints of time-dependent nonlinear
systems of equations puts a huge strain on memory require-
ments. The goal of this paper is to enable adjoint-based
optimization on partial differential equations (PDEs) written
generically as

ut = L[u] in Ω ,u|∂Ω = B[u] ,u|0 = u0,

where the subscript t stands for time differentiation, the
operator L accumulates spatial operators such as gradient
and Laplacian, and B denotes the boundary conditions. The
adjoint problem is derived by using perturbation theory to
be a PDE given by

−ūt = L∗[u, ū] in Ω , ū|∂Ω = B∗[ū] ū|T = f(uT),

where ū denotes the adjoint variable of u, L∗ is the adjoint
operator, and B∗ is the boundary conditions of the adjoint

problem. Note that the adjoint problem depends on the
solution of the forward one and is subject to time reversal
from T to 0.

We assume that the time integration is performed by using
a multistep scheme of order k and ignoring whether the
scheme is implicit or explicit since this aspect bears no
importance for our purposes. If we consider our scheme
given by, say, a function F , we then have for the forward
problem an update of the type

un+1 = un + F (h,L[un+1−i]i≤k),

where h is the time-step length. Note that here we inten-
tionally omitted whether i starts from 0 or 1, which marks
the difference between an implicit or explicit scheme, and
also the exact formula for F , which is merely a linear
combination of the given arguments and can be found in
the literature for either Adams-type methods or backward
differentiation.

Similarly for the reverse we have

ūn+1 = ūn + F (h,L∗[un+1+i, ūn+1−i]i≤k). (1)

The adjoint run will access un+1+i, i ≤ k available from
the forward run. Notice that at the peak memory require-
ment, just after the forward run, all checkpoints un+1+i

are stored in memory and ūn+1 is computed according to
(1). This data-flow reversal problem of un+1−i is known
as adjoint checkpointing in the field of algorithmic differ-
entiation (AD) [1] or discrete adjoints. Ideally we want to
checkpoint (store) all the states u in memory and reuse
them whenever needed. In practice, however, because of
the limit of memory size, it is feasible to checkpoint only
selective states and recompute the missing states. Griewank
and Walther [2] developed an offline algorithm, named
revolve, to generate a checkpointing schedule that has
been proven to minimize the number of recomputation time
steps, given the total number of time steps and the number
of allowed checkpoints in memory. To address the problems
that an a priori number of time steps is not known (e.g.,
in the case of adaptive time stepping), researchers have
proposed several online checkpointing algorithms [3], [4],
[5]. Walther’s algorithms [3] have been proven to be optimal

when the number of time steps is no more than
(
s+2
s

)
,

where s is the maximum number of checkpoints, and near-
optimal after that bound and up to

(
s+3
s

)
time steps. Wang’s

algorithm [5], complementary to Walther’s, deals with an
even larger number of time steps. Although it does not
guarantee optimality in terms of recomputations, it is proven
to be optimal in terms of repetition number, defined as the
maximum number of times needed to compute a specific
time step during the adjoint computation. The common
feature for all these offline and online algorithms is that
only RAM is considered to be the storage medium and the
cost of storing and restoring checkpoints is negligible.

For limited RAM capacity and a large number of time
steps, revolve may require a tremendous number of
recomputation time steps which would hamper the perfor-
mance. Using extra storage devices such as external disks
for checkpointing may reduce the overall computational time
despite the I/O cost, which may be considerable even on
massively parallel systems with many nodes. To this end,
Stumm and Walther proposed a multistage offline algorithm
in [6] to minimize the overall access cost to checkpoints,
which could be stored either in memory or on disk, with
the choice depending on the frequency of the read-write
checkpoint operations. This algorithm also uses the bino-
mial approach and can be considered an extension of the
revolve algorithm taking into account cheap and expen-
sive checkpoints. The access cost of one disk checkpoint is
assumed to be less than the cost for one time step, which is
a strong restriction.

More important, all these algorithms apply only one
binomial strategy in the adjoint computation and hence can
be classified as single-level schemes. Furthermore, none of
them makes good use of extra storage devices other than
RAM, leaving adjoint checkpointing still challenging for
limited RAM capacity and a large number of time steps,
a not-uncommon situation in large-scale scientific compu-
tations. Although having proven the optimality bounds for
these algorithms, optimality proofs for two-level checkpoint-
ing are still limited. In [7], Aupy et al. prove an optimal
scheme for synchronous as opposed to asynchronous two-
level checkpointing with unlimited size and non-negligible
latency for the disk.

In this paper, we propose a new two-level scheme that
exploits the usage of disk to increase allowed checkpoints
and at the same time takes advantage of the optimal results
from revolve at one of the levels. Our scheme can
handle both online and offline checkpointing for large scale
simulations that run on petascale systems such as the IBM
Blue Gene/Q system Mira, while allowing for multiple
binomial strategies, each handling a subsequence of time
steps. In our two-level checkpointing scheme we distinguish
between storing a checkpoint to memory or to disk under
the following assumptions:
A1 The total number of time steps is a priori unknown.

A2 Disk I/O is limited only by bandwidth and latency (not
by size).

A3 There may be infinite disk checkpoints, writing to
archive tapes is considered as disk.

A4 Memory is bound by size.
A5 Memory bandwidth is infinite (writing/reading is 0 cost

compared to the rest of the application).

Assumption A1 allows for a time stepper where the
total number of time steps is unknown. In fluid dynamics,
the physics targeted by the Nek5000 code, researchers
commonly seek statistical convergence of important flow
quantities (such as windowed energy spectra). The statistical
convergence time is not known a priori. Assumptions A2
and A3 posit that the amount of data that can be stored
is limited only by the bandwidth and thus by time. An
application that is able to exploit the full I/O bandwidth
is able to write during the entire execution time without
being limited by storage size. Assumption A4 describes
the limited RAM per core that is limited by the ever-
increasing clock rate, also known as the memory wall.
The evolution of floating-point operations per second and
memory per core is increasingly diverging. Assumption A5
considers the writing and reading of checkpoints into RAM
to be instantaneous. Obviously, in practice RAM has non-
negligible latency. However, extensive measurements have
shown that in comparison with the execution time of one
time step, RAM can be neglected for the Nek5000 code.

The setup of our work differs from preceding approaches
in significant ways. Single-level checkpointing schemes can
accommodate a stringent Assumption A4 only by signifi-
cantly increasing the number of recomputed steps for very
long time horizons [2], [5]. The currently proposed multi-
level checkpointing schemes [6], [7] cannot satisfy A1.

We aim to accommodate all five assumptions. In par-
ticular, our contributions are the following: (1) a novel
asynchronous two-level adjoint checkpointing algorithm, (2)
a performance model of this algorithm under the parametric
limitations of Assumptions A2 and A4, (3) validation of
this performance model on a large subsystem of the Mira
supercomputer, and (4) prediction of the performance for
running the largest possible adjoint computation instance for
Nek5000 on Mira. In the numerical experiments section we
will demonstrate that in our target regime of a large number
of time steps, our two-level approach outperforms single-
level checkpointing. To our knowledge, this is the first case
of a two-level checkpointing scheme demonstrated for fluid
dynamics adjoint computations on the scales described here.
Moreover, an interesting feature of our solution is that it
makes intensive use of all assets of the supercomputers—
CPU, memory, disk, and archive—to improve overall time
to solution.

Forward run

Reverse run

0 1 2 3 4

0 1 2 3 4

(a) Store All

Forward run

Reverse run using interpolation

0 1 2 3 4

0 1 2 3 4

(b) Interpolate
Forward run

Reverse run using recomputation

0 1 2 3 4

2 3 0 12 3 4 0 1 2

(c) Recompute

Figure 1. Three options for recovering the required states in the reverse
run. The first (a) stores all states and restores all of them from memory.
The second (b) interpolates the missing states (blue dotted up-arrow). This
leads to approximated values for the adjoints due to interpolation errors.
The third option (c) recomputes missing states from stored states. This is
the method used in this paper. It has no approximation errors and is only
a trade-off between recomputations and memory usage.

II. ADJOINT CHECKPOINTING

Without loss of generality we assume a time-stepping-
based algorithm where checkpoints are stored or restored
only between two time steps. Adjoint checkpointing is
closely related to restart checkpoints in the domain of
resilience. Resilience checkpoints also save the entire state
of a program in the computational run [8]. Determining the
state of a program is the main task when implementing
restart capabilities. Despite these similarities, adjoint and
restart checkpointing differ in the way the stored check-
points are being accessed. Resilience checkpointing usually
requires only the last checkpoint to be stored while pre-
vious ones are discarded according to a given resilience
strategy. Adjoint computations, however, require access to
all previously computed states, although not at the same
time. Figure 1(a) shows a naive implementation of a store
all adjoint checkpointing scheme. In the naive case all
the checkpoints are stored in the forward run during the
computation of the primal values, while the checkpoints
are restored in the reverse run during the computation of
the adjoints. All checkpoints are equally needed during
the computational flow reversal. This request pattern never
changes, is static, and is known a priori. The disadvantage
of the naive implementation is that at nontrivial checkpoint
sizes and numbers of time steps, the store to memory or
to disk becomes infeasible. RAM does not provide enough
space, and the disks do not provide enough bandwidth.
The only solution is to skip the storing of a checkpoint,
which is equivalent to a failure in terms of resilience. Two
ways exist for recovering from this loss of information. One
can interpolate (see Fig. 1(b)) using the previous and next

checkpoint, or one can use recomputations (see Fig. 1(c))
to recompute the state of the lost checkpoint. Interpolation
implies an approximation error that is not the subject of
this paper. Recomputing a state introduces a higher runtime
while decreasing the memory and/or bandwidth requirement.
An adjoint checkpointing scheme tries to find a potentially
optimal balance of recomputation cost and the amount of
memory or bandwidth; this philosophy is the focus of this
work.

A. Binomial checkpointing using revolve

Under the assumptions presented in Sect. I, the memory
checkpointing fulfills the optimality conditions of revolve
[2]. Measurements will show that our revolve-based memory
checkpointing will not have exactly zero cost for restoring
and storing checkpoints from RAM, thus making it possibly
suboptimal although still efficient. The role of revolve
in our multi-level checkpointing scheme is reduced to a
revolve interface that is called by our scheme introduced
in the next section. It implements the function revolve(
state, q, adjstate, snaps), where state is the forward state,
adjstate the adjoint state, q the stride size, and snaps the
number of available checkpoints. The function whatodo is
implemented as described in [2].

III. ASYNCHRONOUS TWO-LEVEL CHECKPOINTING
ALGORITHM

This section introduces a novel two-level checkpointing
scheme that, as opposed to revolve, satisfies Assumption
A1, in addition to A2–A5 in Sect. I. That is, it is an online
algorithm: it works correctly and efficiently even without a
priori knowledge of the number of time steps [5].

Previous two-level approaches consider disk usage only
insofar as the checkpoints that are used the least should
be dumped on disk; they do not envision disk as part of
an optimal strategy, as we do here. In [6], for example,
the authors assume that the number of disk checkpoints is
limited in contrast, the algorithm presented here makes a
stronger requirement A3: that the disk space is unlimited.
On the other hand, as our scheme does not regard the disk
as the end storage but only as a caching mechanism for
the practically unlimited tape archive, A3 is not limiting.
The only constraint is A2: that the bandwidth, given by the
network where the data is being transfered down the memory
hierarchy, is limited by a measurable and known value. This
assumption will be verified by performance tests in Sect. V,
Figures 8(a) and 8(b).

We present in Fig. 2 the hardware setup for our target
system Mira. There are two storage devices for large files.
One are the disks of Mira, connected to the compute nodes
at a relatively high bandwidth. Storage size is still limited,
however. Hence the archive, called the high-performance
storage system (HPSS), is made available for storing large
amounts of data. There is no official limit on its size, its

Mira

C
o
m

p
u
te

N
o
d
es

I/
O

N
o
d
es

Storage Area Network

≫ 2GB/s D
is

k
s

Fiber

≈ 2GB/s

H
P

S
S

(a
rc

h
iv

e)

Figure 2. Mira storage hierarchy. The archive is referred to as disk in our
algorithm. The disks on Mira are transparent and serve only as a buffer
between archive and Mira.

main limiting factor being bandwidth of around 2 GB/s.
We assume that the write bandwidth to Mira disk is neg-
ligible compared with that of the transfer to archive, which
takes up a considerable amount of time and can be done
asynchronously (see Sect. V for timings). Our top-level
checkpointing layer uses disks only as caching mechanisms
for transfer to archive, and not as resident storage, thus
making the archive bandwidth transfer the practical limiting
factor.

Our two-level checkpointing algorithm proceeds as fol-
lows. On the top level we carry out a bandwidth-limited
checkpointing to disk/archive where no new checkpoint
is generated until the current one has finished writing to
disk/archive. As a result, the current checkpoint stride, q, is
a function of the available bandwidth. On the lower level
we use revolve, with checkpointing in memory, which
is known to be optimal during computational flow reversal
once q is prescribed. Notice that this is not a three-level
checkpointing algorithm: the disks are used only as a buffer
between the archive and the memory.

First, we introduce the first level with checkpoints to
disk in Sect. III-A, followed by the memory checkpoints
in Sect. III-B, which are applied in the reverse run of the
disk checkpoints.

A. Checkpointing to disk (archive)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

q

Figure 3. Forward run with a store (down-arrow) of disk checkpoints at
every q-th time step. q changes at every stride and is dependent on the
bandwidth to archive.

The first level checkpointing stores a checkpoint at every
qth time step (see Fig. 3). This process can be asynchronous,
and it is assumed so for the rest of this work. The larger the
stride q, the more recomputations that will be required by
revolve in the reverse run (see Sect. III-B). The reason is
that the revolve memory checkpointing is restricted by a
limited number of checkpoints c while covering this larger
stride q The lower bound of q is given only by the bandwidth
(network) and the checkpoint size. The checkpoint size itself
is defined by the problem size and the wall clock time of

one time step (a property of Nek5000 on Mira, which will
be profiled in Sect. V).

Algorithm 1 Bandwidth-limited disk checkpointing: for-
ward run and cached asynchronous push to disk
Require: Inital conditions: state0

done ← false
apush(state0)
c← 0, q ← 0, t← 0
while !last do

statet, last← forwardStep(statet−1)
if transfer done then

apush(q)
apush(statet)
c← c+ 1, q ← 0

end if
q ← q + 1
t← t+ 1

end while
apush(q)
apush(c)
return statet

Algorithm 1 presents the algorithm for storing check-
points. The checkpoints are stored using a stack interface
by calling apush(statet), where statet is the state at time
step t. apush is considered to be asynchronous: the push
is initalizied and the function returns while the data is being
copied. As a consequence of A2 and A3, we assume that
apush never fails because of disk space limitations.

First the initial state0 are stored via apush(state0),
where c is the counter of all the stored disk checkpoints and
q is the distance in time steps to the last checkpoint. The
algorithm loops over all the time steps t = 1 to t = n,
where the forward solver in forwardStep() computes
state statet based on statet−1. The application that im-
plements forwardStep() has to return via the Boolean
last whether this was the last time step or not. Bandwidth
is considered available if there is no checkpoint currently
transferred via apush to the archive. This availability is
represented by the boolean transfer done, being true if
apush is done with the transfer and false otherwise. If
the transfer is done, a new checkpoint is stored using an
asynchronous apush(statet). This operation is preceded
by storing the stride size q that corresponds to the just
finished transfer. The q information is important for the
offline revolve scheme that is being applied in the adjoint
run (see Sect. III-B). The checkpoint counter c is then
increased by one, and the stride size q is reset to 0. Finally,
independently of whether a checkpoint is saved or not, the
stride size q is increased by one. After the last time step
t = n has been computed, forwardStep() returns the
last set to false, and the while loop breaks. The last stride

size q is being pushed together with the final number of
checkpoints c.

If the bandwidth goes to 0, transfer done is never set to
true. Thus the entire computation consists only of one stride.
Notice that in the case of multistep time steppers, where
statet is dependent on statet−i, 0 < i ≤ k, Algorithm 1
is still valid, as all the additionally required states are
saved on disk; the checkpoint size grows by a factor of k.
Once the forward run is completed, the computational flow
reversal starts using the restore of a disk checkpoint and the
application of revolve as a second-level checkpointing in
order to compute the adjoints.

B. Restoring from disk and applying revolve

0 1 2 3 4 5 6 7. .
5 6. .

3 4 5. . 3 4. .

0 1 2 3. . 1 2. . 0 1. .

Figure 4. Single reverse run of one stride with q = 7 where one
disk checkpoint is restored (up-arrow) and memory checkpoints are stored
(dashed down-arrow) and restored (dashed up-arrow) according to revolve.
The disk checkpoint at t = 0 is cached in memory after first restore.

This section describes the stride-by-stride restoring of the
disk checkpoints followed by the application of revolve
and thus the actual computation of the adjoints. For each
stride with variable size q in Fig. 3, revolve is run
according to Fig. 4. The disk checkpoint is restored (up-
arrow), and the forward run begins where new memory
checkpoints of state statei (dashed down-arrows) are placed
according to the revolve scheme (i = 3 and i = 5). At the
end of the stride (here i = 7), the adjoints are initialized
by the initial condition of the adjoint state adjstate0 or
taken over by the adjoint state adjstate of the last adjoined
stride. After the adjoint of i = 5 is computed, i = 3 is
restored. Then state i = 4 is recomputed and the adjoint
of t = 4 is evaluated. Again, state i = 3 is restored and
the adjoint of i = 3 computed. Now, the disk checkpoint
(cached in memory) of i = 0 is restored, and state i = 1 is
recomputed and stored. This step is followed by state i = 2
being recomputed and the adjoint of i = 2 being computed.
State i = 1 is restored, followed by the adjoint evaluation
of i = 1. The adjoint of i = 0 then is computed by reusing
again the checkpoint of state i = 0. The additional number
of recomputations compared with a store-all strategy is 3.
The total memory checkpoints used is 2, whereas the store-
all strategy would have used 5.

The interface for revolve used in Algorithm 2 is
presented as a black box through the interface function
revolve(state, q, adjstate, snaps), where state is the

forward state and adjstate is the adjstate used to adjoin
a stride of length q under the constraint of using at most
snaps number of checkpoints.

Algorithm 2 Bandwidth-limited disk checkpointing: reverse
run and pop asynchronous ahead from disk
Require: Initial adjoints: adjstate0

c← pop()
q ← pop()
state← pop()
qc ← apop()
statec ← apop()
adjstate← revolve(state, q, adjstate0)
for c− 2 to 0 do

q ← qc, state← statec
qc ← apop()
statec ← apop()
adjstate← revolve(state, q, adjstate)

end for
return adjstate

The revolve interface is called by Algorithm 2, while the
disk checkpoints are restored. The checkpoints are restored
with one prefetch buffer. The only requirement is the initial
adjoint state adjstate0. The checkpoint counter is popped
by a call to a synchronous pop. Then the first stride size
is popped, followed by the state state. All this has to be
done synchronously because c, q, and state have to be fully
loaded before revolve is called for the first time. Now
an asynchronous pop apop() is called to prefetch the next
stride size qc and state statec. As opposed to pop(), the
function apop() directly returns while doing the transfer
in the background, leading to the first call to revolve
that computes the updated adjoint state adjstate of the first
stride of size q based on the restored state state and the
initial adjoints saved in adjstate0. During this computation
apop continues to restore the second state in statec. When
the first call to revolve is done, we enter the checkpoint
loop which will be repeated c − 1 times. The prefetched
stride size qc and state statec will be copied to q and state,
respectively, followed by the next prefetch of the next stride
in qc and statec through a call to apop. Then, revolve
is called on the current stride. After c − 1 steps, the final
result is saved in adjstate. Again, notice that in the case
of multistep time steppers the checkpoints are considerably
larger.

IV. ALGORITHMIC ANALYSIS

Here we analyze the performance of our two-level check-
pointing algorithm. As a performance metric, we use the
number of time-step recomputations in the adjoint, lower
being better. For brevity we consider the fixed-stride case,
which can provide considerable insight into the overall

performance. Our analytical tool is encapsulated in the
following result.

Proposition 1. Given C allowed checkpoints in RAM, the
number of extra forward steps (recomputations) needed by
the two-level checkpointing Algorithm 2 with a fixed stride
size Q for the adjoint computation of M time steps (M is
not known before the end of the computation is flagged) is

Nr = M + ns p(Q,C) + p (nl, C) (2)

where ns = bM/Qc is the number of Q-sized strides and
nl = M mod Q is the size of the last stride. Here p(a, b) =
t a −

(
b+t
t−1

)
, where t is the unique integer (also known as

repetition number [2]) satisfying
(
b+t−1
t−1

)
< a ≤

(
b+t
t

)
.

Proof: According to Proposition 1 in [2], p(a, b) gives
the number of extra forward steps using revolve to adjoin
a sequence of a time steps storing up to b checkpoints. Thus,
the overall number of forward steps needed for a time steps
is a+ p(a, b). The first-level checkpointing of the two-level
scheme storing data to disk requires integrating M steps. All
the following forward steps should be considered as “extra”
steps. Summing up the overall number of forward steps in
each stride and substituting M = nsQ+ nl leads to (2).

With this proposition, we can predict the actual number
of recomputations of our online checkpointing algorithm for
different M , C, and Q. Figure 5 plots, as a function of the
total number of time steps M , the number of recomputations
for the offline revolve algorithm [2]; the online algorithm
combing Walther’s algorithm [3] and Wang’s algorithm [5];
and our two-level algorithm with stride sizes Q = 200
and Q = 250. The number of maximum checkpoints in
RAM is set to C = 50. The combined algorithm in (2)
using only checkpoints in RAM has been proven to be
optimal when the number of time integration steps is less
than

(
50+2

2

)
= 1326, and near-optimal until the number

of time steps reaches
(

50+3
3

)
= 23426. After that point,

it switches to Wang’s algorithm [5], which has a proven
minimal repetition number. The offline revolve algorithm
of case (1) is included for comparison even if it is not
applicable since M is not known a priori. Its performance
is computed as if M were known a priori.

From Fig. 5(a) we can see that our algorithm needs fewer
recomputations than does the combined online algorithm if
M is sufficiently large (larger than approximately 5, 300
for Q = 200 and 6, 550 for Q = 250). For lower values
of M , our algorithm may need more recomputations, but
only slightly; see Fig. 5(b). Nevertheless the benefits in
recomputations by using our algorithm significantly increase
as the number M of integration time steps becomes large.
For example, at time step 50, 000, the gap in the number
of recomputations between our algorithm and the combined
online algorithm is already over 50, 000. That is, our two-
level algorithm requires less than 75% of the number of
recomputations of the best single-level online scheme. We

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

E
x
tr

a
 f

o
rw

a
rd

 s
te

p
s

(r
e
co

m
p
u
ta

ti
o
n
s)

Time steps

Offline Binomial
Online

Two Level with q=200
Two Level with q=250

(a) 250-50000 time steps

 12000

 13000

 14000

 15000

 16000

 17000

 18000

 19000

 20000

 21000

 22000

 4500 5000 5500 6000 6500 7000 7500

E
x
tr

a
 f

o
rw

a
rd

 s
te

p
s

(r
e
co

m
p
u
ta

ti
o
n
s)

Time steps

Offline Binomial
Online

Two Level with q=200
Two Level with q=250

(b) 4500-7500 time steps

Figure 5. Comparison with online and offline revolve algorithms in terms
of time-step recomputations. There are up to 50 checkpoints available in
RAM. For better visibility, (b) is extracted from a portion of (a).

note that these number ranges are common for complex
fluid dynamics simulations such as those carried out by
Nek5000 [9].

An interesting observation deriving from Proposition 1
and also seen in Fig. 5(b) is that a smaller stride size Q
results in an even small M , where our two-level checkpoint-
ing scheme presents a definite advantage. This suggests the
benefit of using as small a stride Q as feasible. In the next
section we will validate this observation and demonstrate
the other benefits of our algorithm with profiling data from
actual Nek5000 runs on Mira.

V. PERFORMANCE ANALYSIS BASED ON MIRA AND
NEK5000

In this section we carry out profiling experiments and
analyze how our predicted performance results, which use
Assumptions A1–A5, compared with actual performance as
measured on Nek5000 runs on the Mira supercomputer.
Furthermore, once we validate our performance model based
on Proposition 1, we present a prediction framework that
allows a user to extrapolate the runtime behavior from a
small-sized test case to a full-scale simulation run.

A. Adjoint Nek5000 Calculations Validation

Nek5000 is a spectral-element thermo-hydraulics solver,
here however we focus only on the flow part given by
the incompressible Navier-Stokes equations. Neglecting the
force terms and presuming the flow to be driven by ini-
tial/boundary conditions we have the adjoint Navier-Stokes
equations given in (3).

∂ū

∂t
+(∇u)ᵀū−u ·∇ū+

1

Re
∇2ū+∇p̄ = 0, ∇·ū = 0 (3)

Our test case is based on the 2d lid driven cavity (see
Fig. 6(a)) which consists of a box where the boundary con-
ditions are set to 0, except for the velocity u in x direction
of the top lid set to 1. Adjoint computations need a flow
metric for computing the adjoint sensitivity. In our numerical
experiments, we compute the sensitivity of the final kinetic
energy Ek = 1

2 < uT ,uT > / < u0,u0 > normalized by
the initial condition u0, T being the end time. Ek is here
used as an objective function, and it is an important metric
for flow sensitivity [10]. One adjoint computation gives
us the gradient dE

du0
by setting the initial condition of the

adjoint (at final time, due to the computational flow reversal)
to ūT = uT . Currently, Nek5000 implements the solvers
of both the primal (forward run) and dual (adjoint run)
equations. Adjoint implementations are complex and thus
error prone. The adjoint of the fully nonlinear Navier-Stokes
equations is a new topic which was not thoroughly addressed
in the field of fluid dynamics, due to heavy computational
expense. To validate the implementation the gradient of the
objective function for one time step is compared using finite
differences with the one accumulated by using an adjoint run
(see Fig. 6) of the 2d lid driven cavity. This comparison re-
quires a number of computations proportional to the number
of degrees of freedom, whereas the adjoint is a constant of
2.2 slower than a forward step. This makes Figure 6(b) with
only 1,296 degrees of freedom already roughly 600 times
more expensive than Figure 6(a) (see below for a more
elaborate estimate of the adjoint runtime). Some artifacts
persist at element boundaries, most likely due to a mismatch
between the low order finite-difference calculation and the
way continuity is enforced across boundaries in the spectral
element setup, however we have agreement qualitatively as
well as in velocity magnitude

B. Nek5000 Performance Profile

Nek5000 has been shown to scale up to 250,000 cores.
For a more detailed description of Nek5000, please refer to
the user manual [11].

Two parameters quantify the problem size: the element
number m and the polynomial order p. In three dimensions,
the problem size n is m · p3, which is proportional to the
size of a checkpoint. For double precision and a three-
dimensional case it is equal to n · 8 [bytes] · 3. The physical
quantity that is being checkpointed is the velocity field ui

(a) Velocity u (b) Adjoint (c) Finite difference

Figure 6. Validation of the gradient in x direction computed of the energy
Ek at time step t with respect to velocity u at time step t− 1 via adjoint
and finite difference in the 2d lid driven cavity.

at a particular time step i. Nek5000 uses a multistep time
integration scheme, i.e. time step ui depends on k previous
time steps ui−1,ui−2, . . .ui−k, where k gives the accuracy
of the method. In our test case k is always set to 1.

A realistic saturation of Mira in terms of both memory
and floating-point operations is crucial in order to obtain
results that are indicative of the Nek5000 performance
in a production run. We rely on empirical data of past
experiments. The important parameter for the scaling of
Nek5000 is nP , the numbers of degrees of freedom per
processor, roughly equal to n/P , where n is the problem size
defined above and P is the number of processors on which
the problem is run. In our experiments, the polynomial order
was set to an average number of 12. In this regime, Nek5000
shows good scaling when run with two processes per core
provided that it uses an nP of at least 2, 000 to 4, 000 degrees
of freedom per process, where communication overhead
becomes significant. The smallest choice in this range for
nP gives the fastest solution. However, this may not be the
most cost-efficient solution in terms of energy consumption
or core hours.

Given that each node has 16 cores, we run with 32
processes on one node. One node has 16 GB of RAM, so
we end up with 0.5 GB of maximum RAM per process.
This gives us a maximum limit on nP , the degrees of
freedoms per process. To have a representative test case,
we assumed that 0.25 GB of RAM per process should be
used, leading to 50, 000 degrees of freedom per process.
To be precise, the RAM usage is expected to be equal to
50, 000 · 8 [bytes] · 450 ≈ 200MB, which we validated
in measurements throughout our tests. The factor 450 is
a Nek5000-specific factor, defining the workspace required
to carry out various internal operations, mapping from
complex geometries to reference elements etc. On top of
this additional space is needed for the checkpoints, as will
be presented shortly. As a test case, we switched the same
physical case from two to three dimensions, thus having a
computationally realistic use case that allows us to scale the
problem size to the number of computational nodes. That
is, we can keep the degrees of freedom per node constant
independent of the number of nodes used.

 0

 1

 2

 3

 4

 5

 0 500 1000 1500 2000 2500

N
o
rm

a
liz

e
d
 r

u
n
ti

m
e
 (

a
d
jo

in
t/

fo
rw

a
rd

)

Stride size q (time steps)

Measured runtime
Predicted runtime

Figure 7. Normalized runtime consisting of the adjoint runtime divided by
the forward runtime. The predicted ratio assumes that storing and restoring
checkpoints has no cost and one adjoint and primal solve for one time
step have the same runtime. The seeming discontinuity in the predicted
time marks the point at

(s+2
s

)
=

(52
50

)
= 1300 mentioned in Sect. I.

This point marks maximum reusage of the checkpoints and thus also
maximum memory access, hinting at the largest difference at this point
between measured and predicted curve in life experience. For revolve
50 checkpoints were used on 8,192 cores (512 nodes) at a problem size of
100, 000 degrees of freedom per core. The disk I/O bandwidth during the
forward run determines the stride of time steps that revolve will be applied
to. The predicted runtime was analytically derived and serves as a lower
bound. Revolve neglects memory access time.

C. Memory Checkpoints Using Revolve

For the memory checkpoints we set a maximum
number of 50. This translates into a reasonable mem-
ory consumption of 50 · 3 [dimension] · 8 [bytes] ·
50000 [points per process] ≈ 60MB per process. Thus
Nek5000 requires a total of 260 MB of memory per node.
Notice that with 5 step time stepper the RAM consumption
increases to 200 + 5 ∗ 60 = 500MB. The already high
number of 50 checkpoints is from a user’s perspective fixed
in Nek5000. Based on Proposition 1, increasing it further
is not reasonable because the runtime gains are limited;
decreasing them does not free any reasonable amount of
memory. For a different architecture this choice may need
to be revisited.

The first benchmarks were done on 512 nodes, amounting
to 8, 192 cores and thus 16, 384 processes. Besides the
number of checkpoints, revolve requires the total number
of time steps, in our case the stride size. Based on the
analysis in [2], we can produce the predicted additional
effort of recomputation revolve needs after feeding in the
information we have measured in our runs that the dual solve
takes 2.2 times as long as the primal solve. The predicted
performance result is displayed in Fig. 7 as normalized
runtime, that is, the ratio of adjoint computation to forward
computation.

In Fig. 7 we see also that the normalized runtime is
already relatively flat after 500 time steps. Much of the
runtime improvement can be done only if the strides get
below 500 time steps. However, having a normalized runtime
below 5 at a stride size of 1,000 time steps is still considered

acceptable. Given the curve flatness, we decided that the
reasonable range of strides should be no larger than 2,500,
and we then ran numerical experiments on Mira with the
stride in the range of 50–2,500. The results are displayed in
Fig. 7. We see that the agreement between prediction and
measurement is excellent; they are off by 8.5% in the worst
case. This points out that the assumptions of revolve,
also used in this work, and representing a subset of the
A1–A5 assumptions are indeed reasonable to produce this
performance model of our second-level checkpointing layer.
The next section investigates larger settings, the disk/archive
performance, and the impact on the first-level checkpointing
layer of our approach.

D. Disk Checkpoints Based on Revolve Performance and
Bandwidth

We are now in a position to state our overall performance
model. The final assumption, which is a design objective of
Nek5000 and also extensively observed empirically for this
code, is that the compute time of a forward time step can be
assumed constant if the number of degrees of freedom per
process, nP , is fixed to some quantity τs which in this model
can be measured with a small experiment. Since this is an
indication of the scalability of the checkpointed code and not
related directly to checkpointing, we keep it separate from
A1–A5. Then the size S(n) of a checkpoint can be computed
as we did in Sect. V-C. The disk/archive bandwidth B(S)
can be estimated by running read/write experiments on Mira
with files of the target checkpoint size. With this measured
data, the expected stride size of our first-layer checkpointing
scheme becomes q = S(n)/(B(S(n))τs). Subsequently,
the performance of the reverse computation, a normalized
adjoint/forward time-step calculation, can be computed from
the performance model as we did in Sect. V-C and
displayed in Fig. 7. This model now can produce an estimate
of the usage of all Mira resources at any run parameter size.

We present the results of this approach in Table I. We
carry out Mira experiments to compute the bandwidth depen-
dence on checkpoint size, B(S). Then, using τs measured
from previous runs, we compute the expected stride size q
and the corresponding revolve adjoint/forward performance,
which we display in Table I.

Concerning the accuracy of this estimate, an issue that
may come into play is the latency of the archive. The archive
has itself a level of disk storage where the data is eventually
recorded on tapes according to an unknown caching strategy.
However, it has been empirically shown that a storage to tape
occurs only after about a week of storage in the archive. A
primal run of Nek5000 usually does not run over a week.
Nonetheless, if one chooses to do so, the algorithm may
have to be adapted to a higher prefetch window, since the
latency of the tapes is considerably higher.

Figure 8(a) and Fig. 8(b) give an overview of the varia-
tions in bandwidth to the archive while storing and restoring

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

95 189 377 754 1507 7533

B
a
n
d
w

id
th

 (
G

B
/s

)

Checkpoint size (GB)

Bandwidth
Avg. Bandwidth

(a) Store bandwidth

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

95 189 377 754 1507 7533

B
a
n
d
w

id
th

 (
G

B
/s

)

Checkpoint size (GB)

Bandwidth
Avg. Bandwidth

(b) Restore bandwidth

Figure 8. HPSS bandwidth with 320 measurements at 10 time intervals
during 2 days for each checkpoint size.

data (see Table I for checkpoint sizes). The results are based
on 320 transfers store and restore for each number of nodes
at 10 time intervals of around 1-2 hours spread over 3 days.
Only at very The adjoint run where the checkpoints are
restored takes 2 to 5 times longer than the forward run where
the checkpoints are stored (see Fig. 7). Only in very rare
occasions the, if for example the adjoint run takes twice
as long, the store was very fast (2.5 GB/s) and the restore
very slow (1GB/s), it might lead to a problem. At worst, the
asynchronous restore is not finished after a stride has been
adjoined. However, this has not been observed in practice.

Next we validate our performance model and our con-
tention that our two-level checkpointing scheme scales
weakly for a given fixed stride size. For this experiment, the
stride size was chosen to be fixed at q = 250. According
to Table I this allows us to increase the number of nodes
and thus the problem size up to 8,192 nodes, after which
the stride size would have to be increased further. The
primal and dual computation weakly scale equally well, with
the predicted ratio of the normalized runtime being at a
constant 4.2, deducible from Fig. 7. We see in Fig. 9 that the
measured normalized runtime is within 2% of the predicted
one for the entire range of 512–4,096 nodes. This both
supports our contention that we have a valid performance

 0

 500

 1000

 1500

 2000

 2500

512 1024 2048 4096

 1

 2

 3

 4

 5

 6

R
u
n
ti

m
e
 (

s)

N
o
rm

a
liz

e
d

 r
u
n
ti

m
e

Number of nodes

Predicted based on q=250
Avg. primal runtime per stride

Avg. dual runtime per stride
Normalized runtime

Figure 9. Runs conducted with a stride size of 250 and 50 memory
checkpoints per stride. The average runtime of the forward run and adjoint
run per stride represent the weak scaling behavior of Nek5000. The
normalized runtime stays constant with increasing number of nodes.

Table I
ESTIMATED STRIDE SIZE FOR GIVEN PROBLEM SIZE

Measured Estimated
Size
(GB)

Avg. Bw.
(GB/s)

Nodes Stride
Size (ts)

Norm.
runtime

95 1.61 2048 59 3.3
189 2.07 4096 91 3.7
377 2.02 8192 186 4.0
754 1.87 16384 403 4.3

1507 2.10 32768 717 4.4
7533 2.25 32768*5 3348 4.8

model for any problem size and shows the scalability of
our approach. While more runs are desirable to strengthen
the validation case, we point out that Fig. 9 took half a
million CPU-hours on Mira, whereas the runs to calibrate
the prediction took a mere 40,000 core-hours.

VI. CONCLUSION

We present a new online and scalable two-level check-
pointing scheme for large scale time-dependent adjoint com-
putations and we demonstrate it for the highly scalable fluid
dynamics code Nek5000. The approach makes use of all
the system’s resources, from local node memory down the
memory hierarchy to the archive. At the lower level, it uses
the revolve algorithm which requires a given stride—a
prescribed number of time steps. At the upper level, we use
an algorithm that adapts the stride size to the disk/archive
bandwidth and that can accommodate an a priori unknown
number of total time steps.

In addition, we present a performance model for our
approach that requires only a few inexpensive measurements
on the target architecture for the same nP (number of
degrees of freedom per process) as the large-scale target
run. With this model, we can predict the adjoint to forward
run performance ratio and thus the total CPU time of a
problem of arbitrary size with the same nP . We validated
our model with several experiments with a driven cavity
example where the measured errors were within 2% in

the entire parameter range, which included the use of
4096 ∗ 32 = 131072 parallel processes. Based on this
performance model, we also estimate that our two-level
checkpointing approach offers significant benefits compared
with single-level checkpointing; for example, our approach
needs only 75% recomputations compared with single-level
checkpointing for simulations exceeding 50,000 time steps
of Nek5000.

This paper has empirically verified that large-scale non-
linear adjoint computations are feasible with a predictable
performance even in a high-latency environment with a deep
memory hierarchy. We note that, as a result, the adjoint
calculation needs about a factor of 5 CPU time overall more
than a forward run, while producing in principle n times
more information about a chosen metric of interest (in our
case, total terminal flow energy), where n is the number of
degrees of freedom.

VII. OUTLOOK

This work started as an exploratory overview for a generic
adjoint capability implementation in Nek5000. The pre-
sented work focuses on a continuous adjoint within our two-
level checkpointing scheme. An alternative to continuous
adjoints would be discrete adjoints, for which we would
need to verify potential numerical and runtime differences.
In particular, in coupled models or boundary conditions with
no adjoint formulation, discrete adjoints are desirable. The
third author has developed discrete adjoints as well as the
two-level checkpointing scheme in PETSc 1 and more results
will be presented in future publications.

Optimal checkpointing schemes remain an open issue.
Clarification of the optimality of this algorithm or variations
thereof with different assumptions is required. A first step
would be the separate treatment disk and archive leading to
a three-level scheme.

Specific issues linked to the large-scale setting also need
to be addressed, such as increasing the efficient use of
system resources. Compression of checkpoints is another
means of trading disk memory for computational resources.
Additionally, noise is a major issue on large-scale systems,
since resources are rarely used solely by one application. Our
adaptive stride approach is a first attempt at addressing that
issue. We note, however, that if storing and restoring transfer
times are not between specific bounds, the efficiency of this
algorithm is dramatically reduced. More flexible approaches
with respect to system noise need to be explored.

ACKNOWLEDGMENT

We thank Philipp Schlatter, KTH, Sweden for his invalu-
able suggestions and insights in the field of fluid dynamics.
We also thank the entire Nek5000 group at Argonne for their
continuous help on the inner workings of Nek5000 and Mira

1http://www.mcs.anl.gov/petsc/

compute time. This material was based upon work supported
by the U.S. Department of Energy, Office of Science, under
contract DE-AC02-06CH11357.

REFERENCES

[1] A. Griewank and A. Walther, Evaluating Derivatives: Prin-
ciples and Techniques of Algorithmic Differentiation, 2nd ed.
Philadelphia, PA: SIAM, 2008, no. 105.

[2] ——, “Algorithm 799: Revolve: An Implementation of
Checkpointing for the Reverse or Adjoint Mode of Compu-
tational Differentiation,” ACM Transactions on Mathematical
Software, vol. 26, no. 1, pp. 19–45, Mar. 2000.

[3] P. Stumm and A. Walther, “New algorithms for optimal on-
line checkpointing,” SIAM Journal on Scientific Computing,
vol. 32, no. 2, pp. 836–854, 2010.

[4] V. Heuveline and A. Walther, “Online checkpointing for
parallel adjoint computation in PDEs: Application to goal-
oriented adaptivity and flow control,” in Euro-Par 2006
Parallel Processing. Springer, 2006, pp. 689–699.

[5] Q. Wang, P. Moin, and G. Iaccarino, “Minimal repetition
dynamic checkpointing algorithm for unsteady adjoint calcu-
lation,” SIAM Journal on Scientific Computing, vol. 31, no. 4,
pp. 2549–2567, 2009.

[6] P. Stumm and A. Walther, “MultiStage Approaches for Op-
timal Offline Checkpointing,” SIAM Journal on Scientific
Computing, vol. 31, no. 3, pp. 1946–1967, 2009.

[7] G. Aupy, J. Herrmann, P. Hovland, and Y. Robert, “Optimal
multistage algorithm for adjoint computation,” Research Re-
port RR-8721, LIP - ENS Lyon; Argonne national labortory,
Tech. Rep., 2014.

[8] T. Herault and Y. Robert, Fault-Tolerance Techniques for
High-Performance Computing, ser. Computer Communica-
tions and Networks. Springer International Publishing, 2015.

[9] G. K. El Khoury, P. Schlatter, A. Noorani, P. F. Fischer,
G. Brethouwer, and A. V. Johansson, “Direct numerical
simulation of turbulent pipe flow at moderately high reynolds
numbers,” Flow, Turbulence, and Combustion, vol. 91, no. 3,
pp. 475–495, 2013.

[10] A. Peplinski, P. Schlatter, P. Fischer, and D. Henningson,
“Stability tools for the spectral-element code Nek5000: Ap-
plication to jet-in-crossflow,” in Spectral and High Order
Methods for Partial Differential Equations-ICOSAHOM 2012.
Springer, 2014, pp. 349–359.

[11] J. Lottes and P. Fischer et al., “Nek5000: User’s manual,”
Argonne National Laboratory, Tech. Rep. ANL/MCS-TM-
351, 2015.

The submitted manuscript has been created by the University of Chicago as
Operator of Argonne National Laboratory (“Argonne”) under Contract No. DE-
AC02-06CH11357 with the U.S. Department of Energy. The U.S. Government
retains for itself, and others acting on its behalf, a paid-up, nonexclusive,
irrevocable worldwide license in said article to reproduce, prepare derivative
works, distribute copies to the public, and perform publicly and display publicly,
by or on behalf of the Government.

